Extensions 1→N→G→Q→1 with N=C22 and Q=D30

Direct product G=N×Q with N=C22 and Q=D30
dρLabelID
C23×D15120C2^3xD15240,207

Semidirect products G=N:Q with N=C22 and Q=D30
extensionφ:Q→Aut NdρLabelID
C22⋊D30 = C2×C5⋊S4φ: D30/C10S3 ⊆ Aut C22306+C2^2:D30240,197
C222D30 = D4×D15φ: D30/D15C2 ⊆ Aut C22604+C2^2:2D30240,179
C223D30 = C2×C157D4φ: D30/C30C2 ⊆ Aut C22120C2^2:3D30240,184

Non-split extensions G=N.Q with N=C22 and Q=D30
extensionφ:Q→Aut NdρLabelID
C22.1D30 = D42D15φ: D30/D15C2 ⊆ Aut C221204-C2^2.1D30240,180
C22.2D30 = D6011C2φ: D30/C30C2 ⊆ Aut C221202C2^2.2D30240,178
C22.3D30 = C4×Dic15central extension (φ=1)240C2^2.3D30240,72
C22.4D30 = C30.4Q8central extension (φ=1)240C2^2.4D30240,73
C22.5D30 = C605C4central extension (φ=1)240C2^2.5D30240,74
C22.6D30 = D303C4central extension (φ=1)120C2^2.6D30240,75
C22.7D30 = C30.38D4central extension (φ=1)120C2^2.7D30240,80
C22.8D30 = C2×Dic30central extension (φ=1)240C2^2.8D30240,175
C22.9D30 = C2×C4×D15central extension (φ=1)120C2^2.9D30240,176
C22.10D30 = C2×D60central extension (φ=1)120C2^2.10D30240,177
C22.11D30 = C22×Dic15central extension (φ=1)240C2^2.11D30240,183

׿
×
𝔽